

World Fire Congress

2024 UNITED STATES

Fire Risk of Emerging Technologies

Steve Kerber, PhD, PE

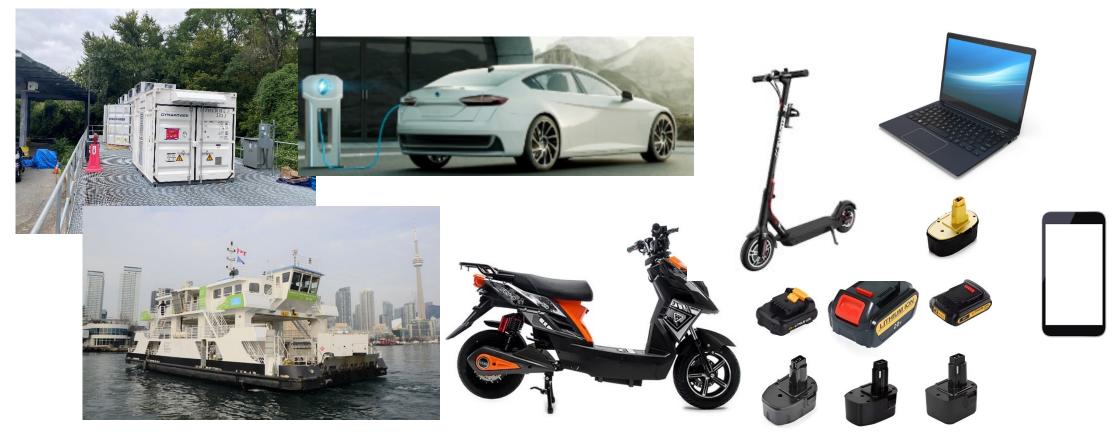
Fire Risk of Emerging Technologies

Steve Kerber, PhD, PE

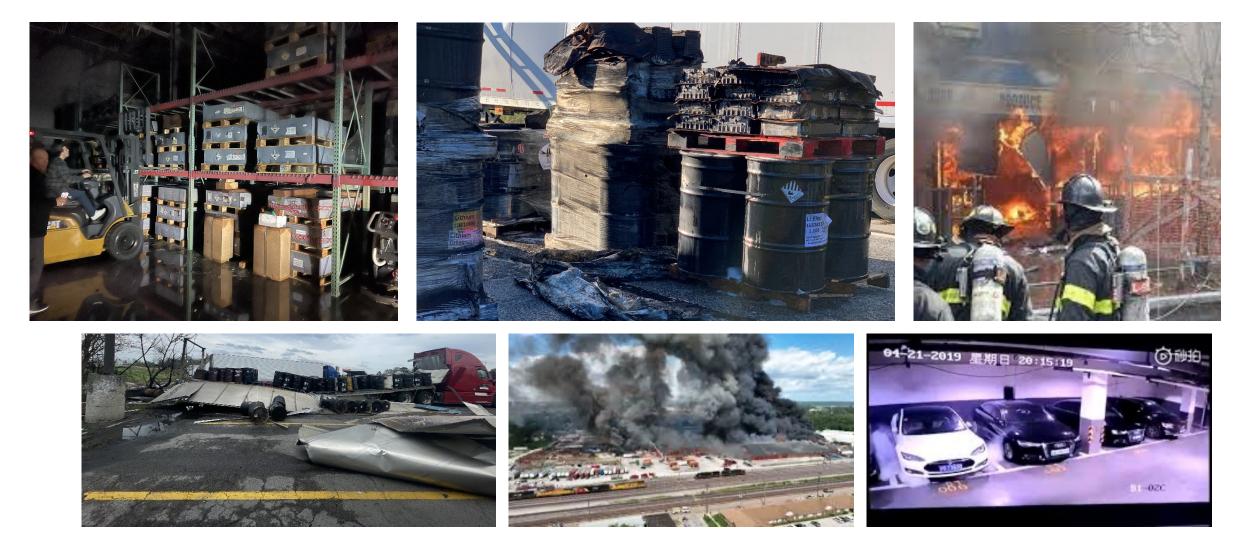
World Fire Congress

May 8, 2024

Balancing Sustainability and Fire Resiliency

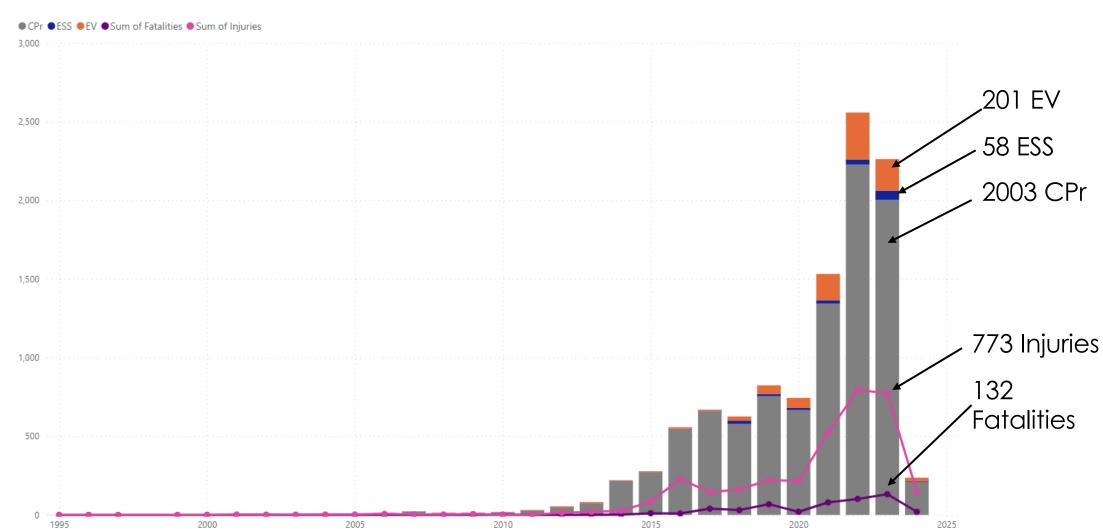


Lithium-ion battery adoption and the fire service


ESS – Marine – EV – Consumer Products - Medical

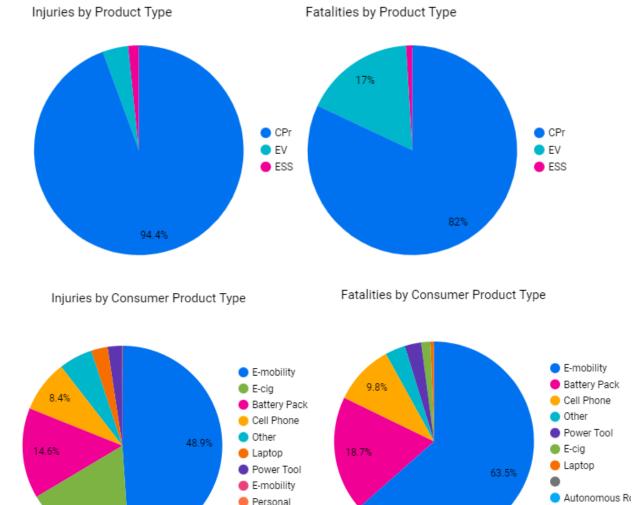
All powered devices are candidates for lithium-ion electrification.

Many challenges throughout the life cycle


Global trend of lithium-ion battery incidents

● CPr ● ESS ● EV

Lithium-ion battery thermal runaway incidents



Year

Source: UL Solutions R&D (Veronica Kimmerly)

North America's biggest challenge

others

17.5%

others

Most injury and fatality incidents involve consumer products*

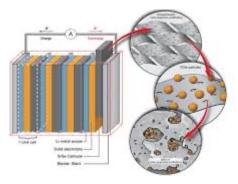
Most consumer products incidents involve e-mobility devices

*EV data inflated by fatalities as a result of crash

Bureau of Fire Investigation Lithium Ion Fire Stats

(As of 12/31/2023)

	Investigations	Injuries	Deaths
2019	30	13	0
2020	44	23	0
2021	104	79	4
2022	220	147	6
2023	267	150	18



Moving target

- New fuels, new chemistries, new boxes
- Determining which hazards extend outside scope of first response
- Staff development to the new fire environment
- Codes and standards are slow, technology is fast
- Developing best practices for extinguishment and gear cleaning
- Impact on building systems and evolutions
- Community actions to eliminate secondary incidents
- Public messaging and the fire service role goes beyond operations
- DIY impacts

Addressing the challenge today and into the future

Fire Risk of Emerging Technologies

Steve Kerber, PhD, PE steve.kerber@ul.org

World Fire Congress

2024 UNITED STATES

Energy transition in the built environment: Dutch facts and figures for AFV and PV

Dr. Nils Rosmuller

Applied Professor, Energy and Transportation Safety

World Fire Congress

2024 UNITED STATES

1. The built environment

The term "**built environment**" refers to human-made conditions and is often used in architecture, landscape architecture, urban planning ...

These curated spaces provide the setting for human activity and were created to fulfil human desires and needs

Buildings, public infrastructure, industries and agriculture

1. The built environment

High-rise buildings

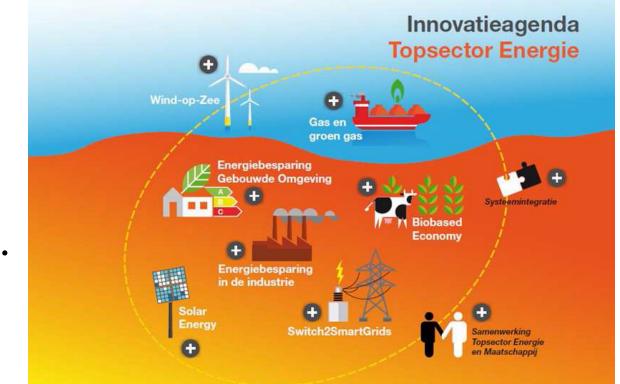
An artists impression of the completed building. Illustration: Alv

Car parks

Infrastructure

A rainbow bike road in Utrecht, Netherlands. Photo Credit: Dutch Cycling Embassy

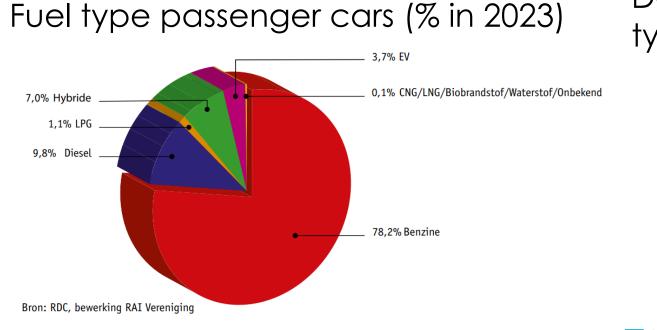
Warehouses, barns



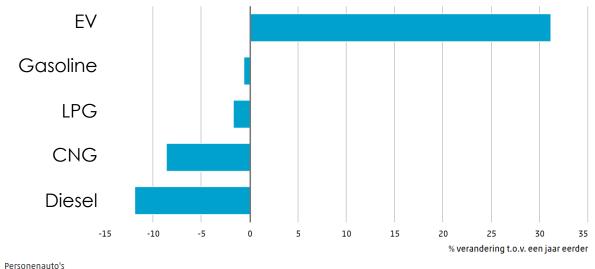
Industries

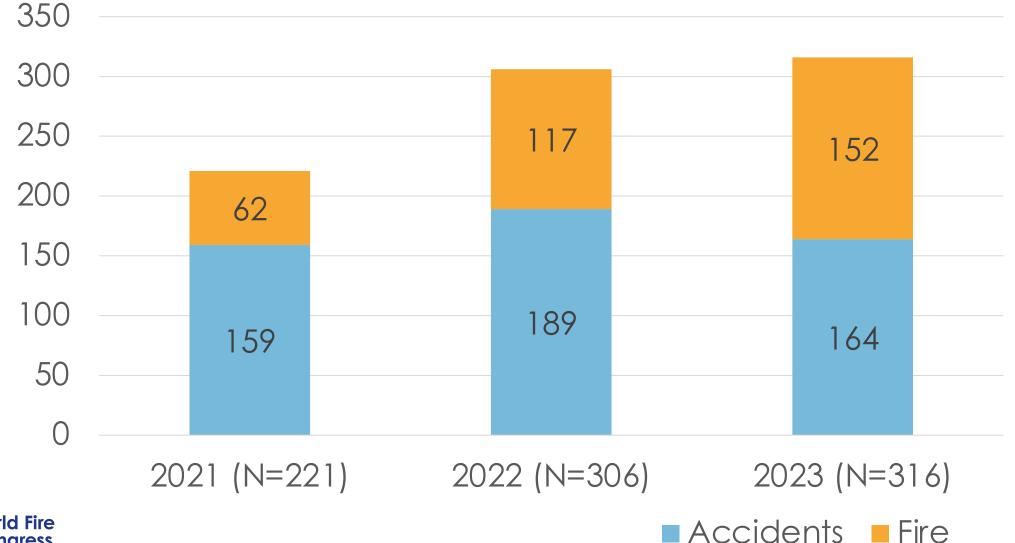
2. The Energy Transition

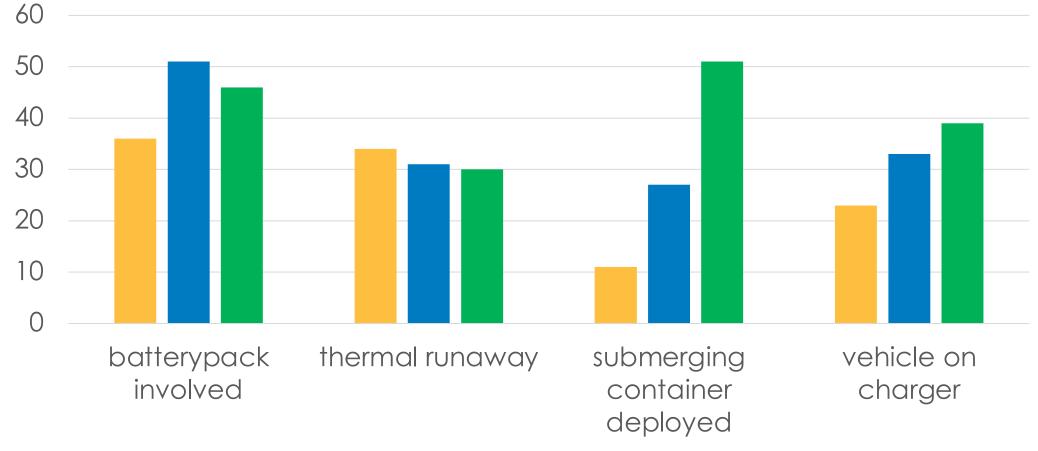
- Sustainability
- Clean/'green' fuels
- Electrification
- Hydrogen
- Geo, bio, wind, solar...
- Nuclear


3a) Dutch F&F: Alternative-fueled vehicles (AFV)

- Database (The Netherlands)
- Start: 1 januari 2021
- Alternative (clean(er)) Fuels:
 - BEV, (P)HEV, FCEV, CNG, LNG
- Type of vehicles:
 - Everything with 4+ wheels
- Fire brigade on the incident scene
- Data collection: Questionnaire




Development passenger cars per fuel type (% in 2023)



Number of AFV-Incidents

Incident Characteristics (in absolute numbers)

■ 2022 ■ 2023

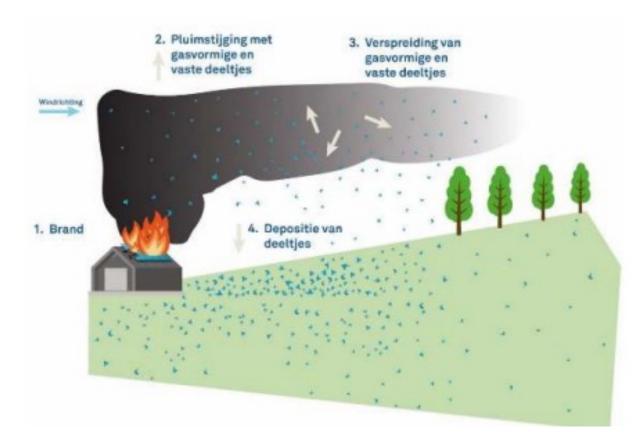
2021

3a) Key lessons: AFVs

- Incidents (fire and accidents): Despite the +30% EV, the absolute incident number (fire and accident) remains the same (2021-2023)
- Fires
 - In case of fire → EV at charger in about 25%-35%
 - Battery in about 35% in thermal runaway
- Accidents
 - Substantial increase in deploying the submerging container
 - Battery hardly in thermal runaway
- Serious fire fighter issues
 - TR, copious amounts of water, contaminated cooling water, explosions, HF

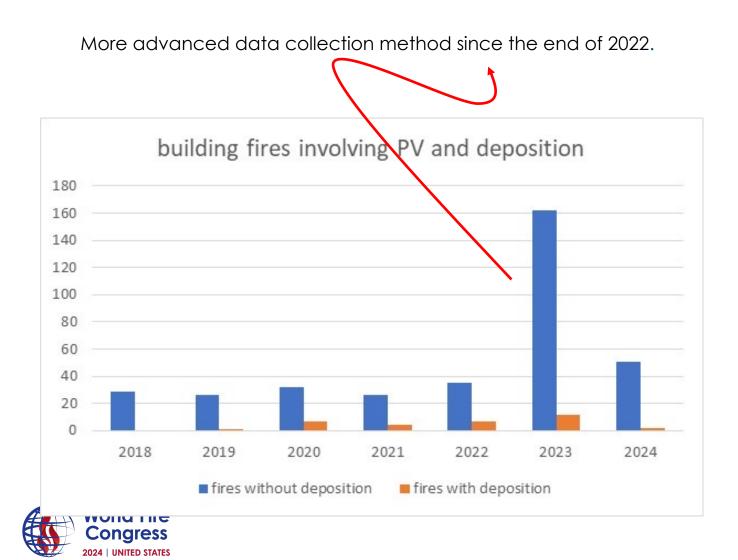
3b) F&F Solar system fires in NI (TNO and ECN , 2019)

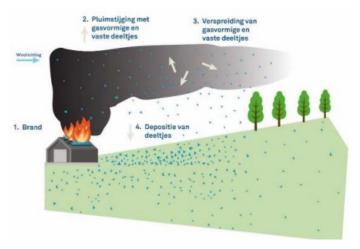
Plaats	datum	Etmaal-gem windsnelhei Bilt[m/s]					le straling t [J/cm2]	pand	type	markt	
Aalten	29-6-2018		3.8		26.1		2,953 5	schuur		residentieel	
Apeldoorn	4 6 2010		20	S	22.2		4 740	uis	indak	residentieel	
Appelscha								uis	indak	residentieel	
Denekamp						>		pano	platdak	zakelijk	
Drachten					EC	(N)	for life	ion je	indak	residentieel	
Enschede								pano	l platdak	zakelijk	
Haarlemmermeer							Westerduinweg 1755 LE Petter		?	residentieel	
Heiloo							Postbus 15 1755 ZG Pette	uis	indak	residentieel	
Horst		TNO-rapport					www.tno.nl	uis	indak	residentieel	
Hulst		TNO 2019 P10287					T +31 88 866 5	50 65 UIS	indak	residentieel	
Ijsselstein		Brandincide systemen in			sche (PV)			pano	schuin dak	zakelijk	
Lemelerveld		systementin	Neuenai	IU.				uis	indak	residentieel	
Leidsche Rijn		Een inventa	risatie					pano	platdak	residentieel	
Lytsewierrum											
Meijel											
Melick		Datum	13 maart 2019					uis	indak	residentieel	
Onbekend		Auteur(s)	E.E. Bende N.J.J. Dekker					uis	opdak	residentieel	
Opmeer		Exemplaarnummer	1					uis	platdak	residentieel	
Rotterdam		Oplage Aantal pagina's Aantal bijlagen	10 65 (incl. bijlage 20	en)				uis	opdak	residentieel	
Stein		Opdrachtgever Projectnaam		or Ondernemend	Nederland (RVO)			uis	platdak	residentieel	
Twello		Projectnummer	060.37017						?	residentieel	
Utererp								pano	opdak	zakelijk	
Vinkeveen		Alle rechten voorbeh Niets uit deze uitgave	mag worden ve					uis	indak	residentieel	
Ijsselstein		van druk, fotokopie, r toestemming van TN		welke andere wijze dan ook, zonder voorafgaande		•	pano	1 ?	zakelijk		
Zutphen		Indien dit rapport in o					n van	uis	platdak	residentieel	
Zwaanshoek2016				er verwezen naar de Algemene Voorwaarden voor le betreffende terzake tussen de partijen gesloten			uis	Indak	residentieel		
Zwaanshoek2018			van het TNO-ra	D-rapport aan direct belanghebbenden is toegestaan.				uis	Indak	residentieel	
Wilaarderaburen		© 2019 TNO						pano	1 ?	zakelijk	


• 24 fires in 2018

- 20 private houses
- 4 others
- 80-90% in-roof systems
- Causes:
 - 70% installation error
 - 10% junction box
 - 20% heat development

3b) Building fires involving solar panels





Deposition of sharp-edged, (non-toxic) solar cell fragments → danger to human, animals, and crop (NIPV (2020, 2021) and RIVM (2022))

3b) Building fires involving solar panels

- 349 building fires involving PV
 - · 361: no deposition
 - · 33: deposition
- Deposition characteristics:
 - buildings with fire load and 100s of PV panels
 - solar cell fragments
 - · distance: several kilometers

3b) Key lessons PV-panels

- Solar panels complicate firefighting:
 - Deposition of sharp-edged pieces
 - 'Umbrella effect' in case of fire suppression
 - Electrocution risks

4) Key message ET in built environment

- Energy transition (ET) affects life safety of citizens and firefighters due to 'new' fire risks in the built environment, complicating fire suppression
- Designers, OEM's, spatial planners have to take their responsibility for safety,
- Communicate with the FRS, rather than passing the responsibility for safety to them (suppressing the accident consequences)
- Maximum effort on prevention and legislation to better 'guarantee' safety

Energy transition in the built environment: Dutch facts and figures for AFV and PV

Dr. Nils Rosmuller

Applied Professor, Energy and Transportation Safety

World Fire Congress

2024 UNITED STATES

World Fire Congress

2024 UNITED STATES

Lithium-Ion Battery/ Electric Vehicle Fire Incidents Around the United States

Michael G. Abraham, PE Bureau of Alcohol, Tobacco, Firearms, and Explosives Fire Research Laboratory

ATF - Certified Fire Investigators (CFI)

- ATF is the primary agency investigating fires affecting interstate or foreign commerce.
- ATF has approximately 110 Certified Fire Investigators nationwide.
- Two-year, full-time training program involving fire scene examinations, in-person training, and a research project.
- IAAI CFI certification

ATF National Response Team (NRT) & International Response Team (IRT)

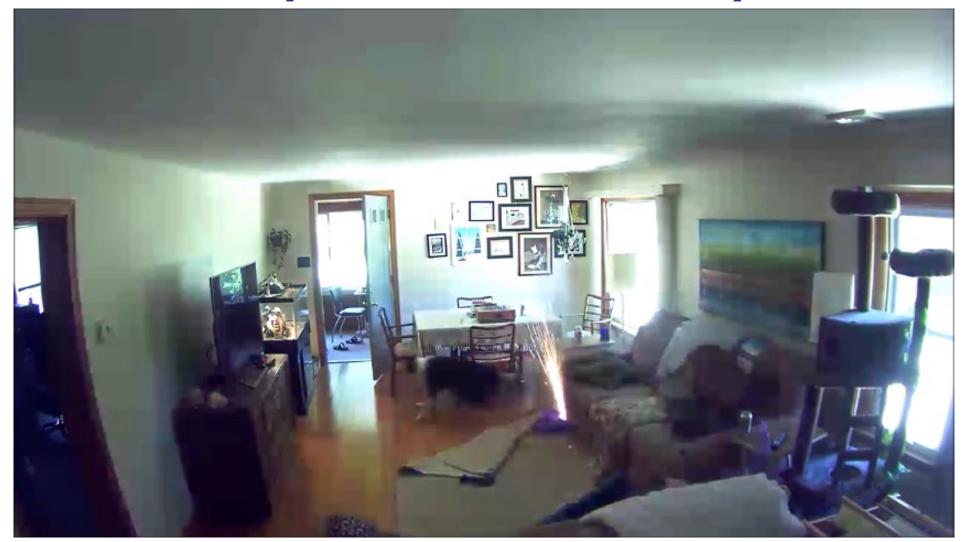
- Mission to investigate large fire and explosion incidents anywhere in the U.S.
- 15 full-time Special Agents, 115 part-time Special Agents, Fire Protection and Electrical Engineers, Chemists, Accelerant Detection Canines, etc.
- Over 900 callouts nationwide since 1978.
- 43 International callouts to countries in Europe, Africa, Asia, and South America.

ATF Fire Research Laboratory (FRL)

- Support fire investigations and the resolution of fire-related crimes for Federal, State, Local, and International Authorities
- On-scene Support and Evidence Examinations
- Full-Scale Testing
- Research, Training, and Education

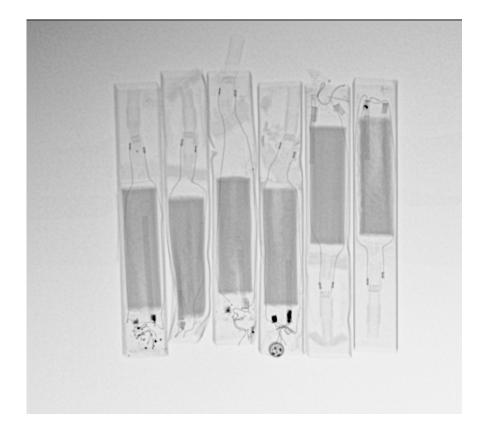
SSA/CFI Silva Research Project

Spokane, WA - 2018 Tesla Model 3 Battery

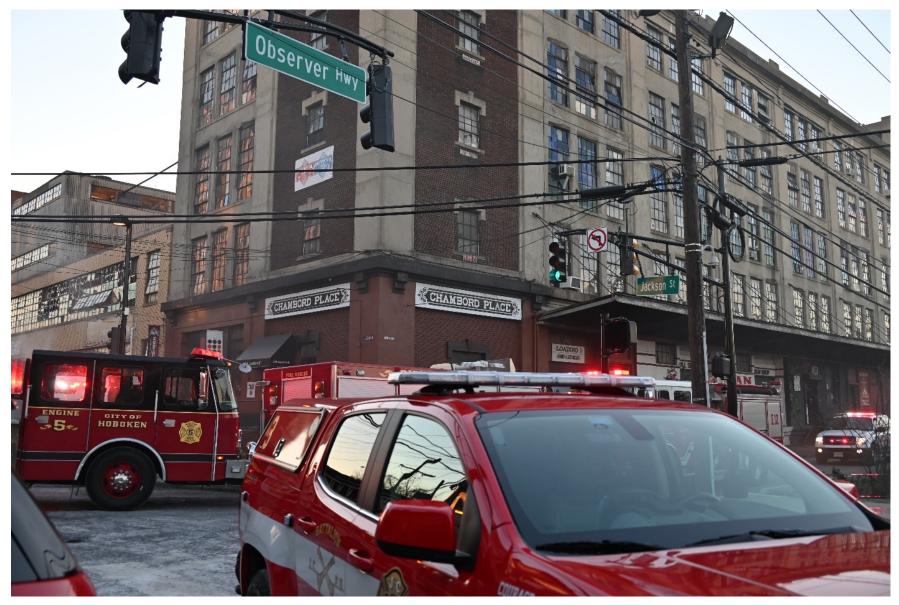


Neptune, New Jersey

Neptune, New Jersey

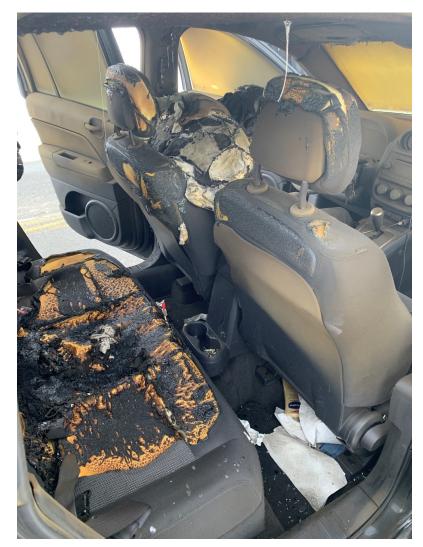


Los Angeles, CA


Los Angeles, CA

Hoboken, NJ

Hoboken, NJ



Vape Failure Fatalities

St. Petersburg, FL

Chewalah, WA

New Orleans, LA - Oil Tanker Bridge Fire

Franklin Township, NJ

Boston Metro Area, MA

Palo Alto, CA

Washington

New York City – Ford Fusion Hybrid

Pittsburgh, PA - Tesla Model X

Fire occurred in February

Joint Scene Exam in April
Vehicle Removed & Transported

Three hours later...

World Fire Congress

2024 UNITED STATES

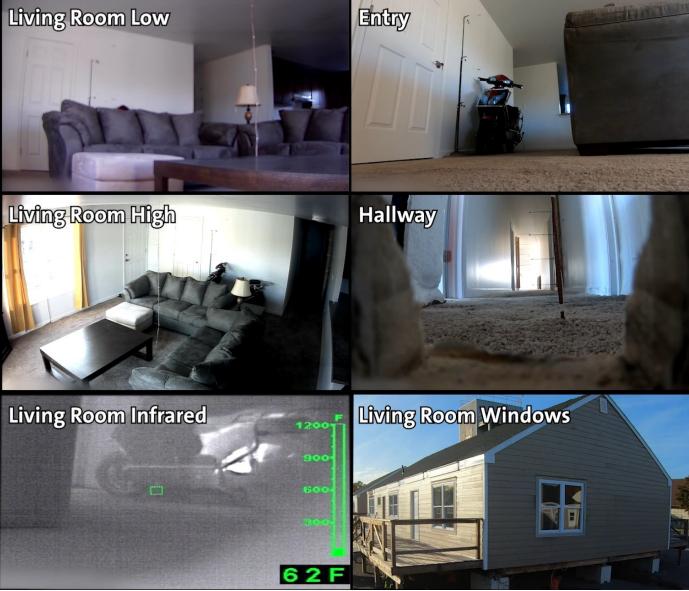
Michael G. Abraham, PE Forensic Engineer ATF Fire Research Laboratory Bureau of Alcohol, Tobacco, Firearms, and Explosives U.S. Department of Justice

michael.abraham@atf.gov

Fire Risk of Emerging Technologies

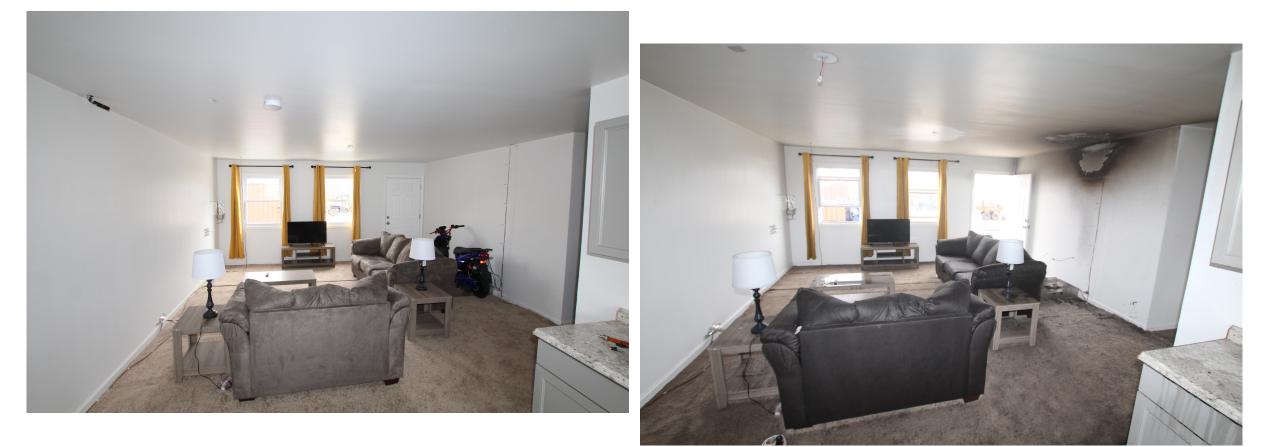
Adam Barowy UL FSRI

World Fire Congress


2024 UNITED STATES

Intentional E-Scooter Overcharge: Living Room

Overcharge Time: 01:39:23



2

Impact of Residential Automatic Fire Sprinklers

E H F R G E Of BATTERY SAFETY

What can you do to "Take C.H.A.R.G.E. of Battery Safety"?

www.batteryfiresafety.org

Choose certified products.

Handle with care.

Always stay alert for warning signs.

Recycle devices and batteries properly.

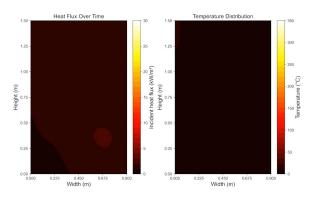
Get out quickly if there's a fire.

Educate others on safe practices.

EV Research at FSRI

- Are hazards changing with a transition to electric vehicles (EVs)? If so, how?
- 2. What fire control strategies can fire fighters use to mitigate demonstrated hazards?

Courtesy: Boston Fire Department (MA)



EV Fire Measurements & Methodologies

- 1. Heat Release Rate
- 2. Water contamination
- 3. Heat Flux
- 4. Occupational Exposures
 - 1. Gases, Vapors, and Particulates
 - 2. PPE Contamination
 - 3. PPE Decontamination

Fire Risk of Emerging Technologies

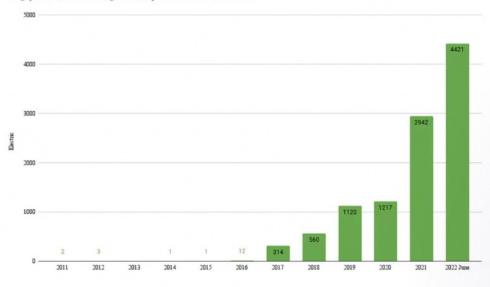
Adam Barowy UL FSR adam.barowy@ul.org

World Fire Congress

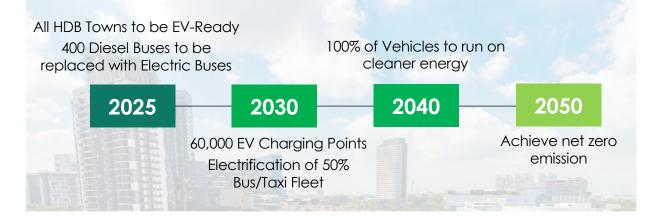
2024 UNITED STATES

World Fire Congress

2024 UNITED STATES


EV Battery Fires SCDF's Current Response, Challenges, and Areas for Further Work

DC Ling Young Ern Deputy Commissioner (Operations & Resilience) Singapore Civil Defence Force



SG EV Landscape

Singapore aims to achieve net zero emissions by 2050

Singapore Electric Passenger Car Population 2011 to 2022 1H

SG Green Plan

2025 – New Registration of Diesel Cars to cease, HDB towns to be charger equipped

2030 – Car/Taxi Registration to be cleaner energy models, 60,000 island chargers

2040 – All vehicles to run on clean energy

Risks Identified

Thermal Runaway

Phenomenon in which the Lithium-ion cell enters an uncontrolled, self-heating state of propagation.

Off Gassing

Occurs during thermal runaway and involves production of smoke, usually grey or white in color, that issues from the battery.

Vapour Cloud Explosion

EV batteries undergoing thermal runaway will release toxic/flammable gases due to the combustion of electrolytes

EV Fires – Recent Cases in Singapore

Fire involved a battery module stored in the storage compartment of a Porsche Taycan. Fire was extinguished with a water jet.

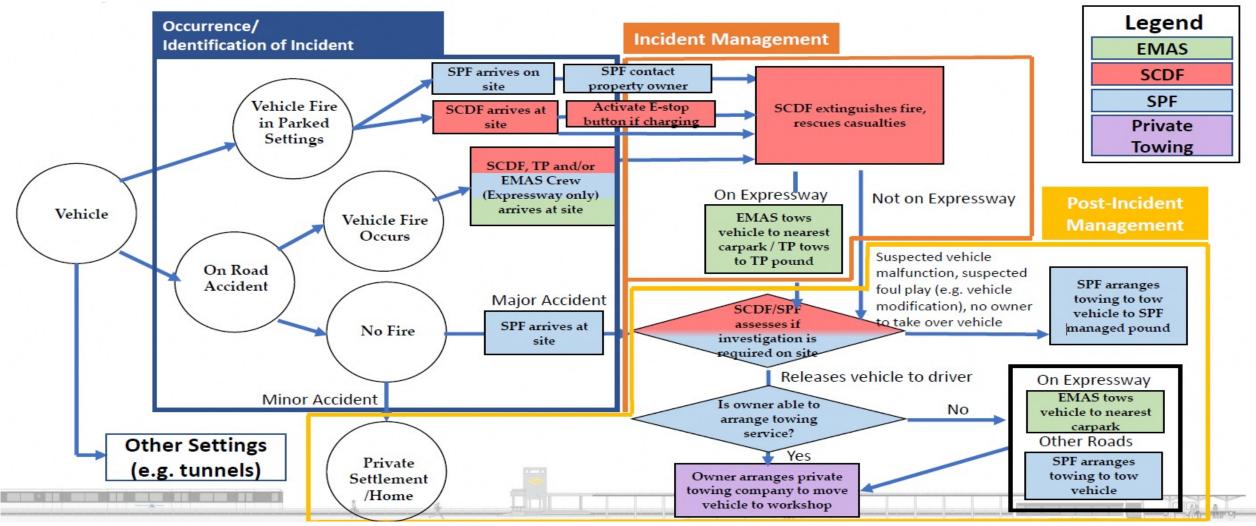
Case 2: Kaki Bukit (Jan 24)

Premises was a workshop housing three vehicles: a Porsche Taycan (fire involved the battery pack) and 2 hybrids. Fire was extinguished within 15 mins with a water jet.

Government's Response to EV Incidents

LTA and SCDF established the EV Battery Safety Taskforce (EBST) in August 2023 to develop matters related to strengthening Singapore's response to EV incidents. The EBST specifically looks at:

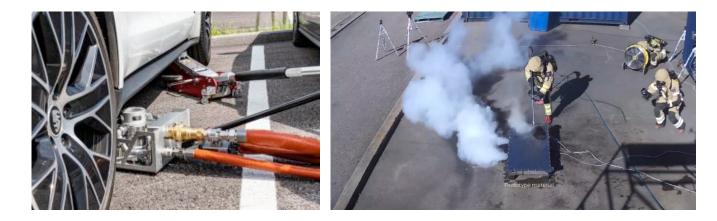
- Enhancing incident response framework to support Singapore's transition to EVs
- Building good public understanding on EV batteries and associated risks
- Promoting knowledge sharing among agencies in area of EV batteries
- Reviewing sufficiency of existing capabilities, infrastructure, and regulations to manage EV incidents



Government's Response to EV Incidents

Fire Safety Provisions for EV Charging Indoor & Outdoor Chargers – 60,000 by 2030

- Each EV charging station shall have an e-stop button within 15m.
- Regulated under the Fire Code (Clause10.4.2) and national EV charging standard (Technical Reference 25).



SCDF's EV Firefighting Tools

Vehicle Fire Blanket

SCDF recently introduced vehicle fire blankets to **slow fire spread and any release of toxic gases**, to buy time while a water jet is prepared.

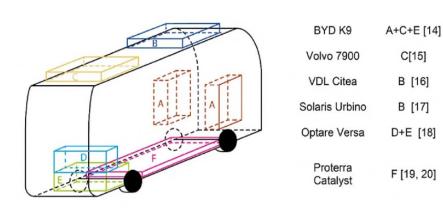
Water Injection

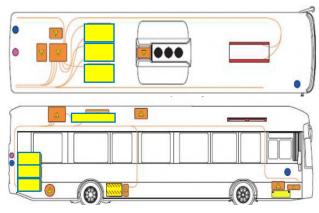
<u>Piercing</u>: Recently operationalised tool with a hardened lance that **pneumatically pierces the EV battery compartment** to flood it with water.

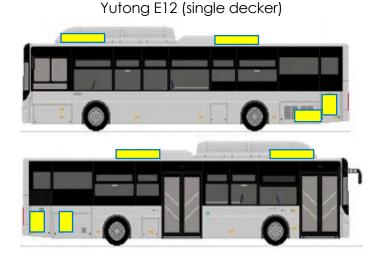
<u>Ultra High Pressure (UHPS) cutting</u>: Latest generation of fire engine will be equipped with **UHPS extinguishing tools to inject water into EV battery compartment**; further trials will be conducted upon delivery in end 24.

EV Fire Test

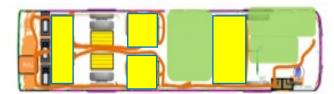
- An EV fire test was conducted on 11 April 2024
 - Validated SCDF's EV firefighting response plan
 - Deployment of vehicle fire blanket in tandem with water jet and battery fire extinguishing system

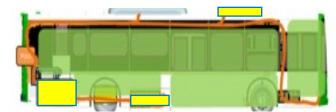



EV Firefighting Challenge – Large Vehicles



Vehicle batteries for electric buses and heavy goods vehicles are mounted in areas other than the vehicle floor.


Accessing the batteries and applying water effectively will be a challenge.


Linkker ST12MSD (single decker)

BYD K9 (single decker)

More Research Needed on Reignition Risk and Quarantine Methods

State-of-Charge is a good meansof estimating reignition risk

However, EV instruments display battery related information, but this is often damaged during the incident. Better tools needed to help responders quantify reignition risk.

02. Quarantine of damaged EVs

More research needed on cost effective means of quarantining EVs, if required. For example, to enable safe containment within the vehicle workshop. **Difficult in Singapore due to limited space!**

Conclusion

1. Science & Technology Advancements:

- Safer, superior EV battery & car designs
- Lower incidence of EV fires worldwide compared to ICE vehicles

2. Unique Challenges for Emergency Services:

- EV fires present distinct challenges
- Rare occurrences can skew public perception

3. Confidence Building for a Greener Future:

- SCDF and partner agencies building robust capabilities
- Establishing an ecosystem for comprehensive preparedness

4. Research Opportunities:

- Focus on EV battery fire mitigation approaches
- Aim to enhance global response effectiveness

EV Battery Fires SCDF's Current Response, Challenges, and Areas for Further Work

Ling Young Ern Deputy Commissioner (Future Technology & Public Safety) Singapore Civil Defence Force

World Fire Congress

2024 UNITED STATES